

Illustration of Proliferation Resistance Assessment Methodology Through the French Fuel Cycle

C. Xerri – AREVA

D. Grenèche-AREVA, J.Cl. Gauthier-CEA, S. Grit-DGEMP

GLOBAL 2003, New Orleans, 18 November 2003

- Proliferation Resistance
 - Definition and key concepts
- ▶ Intrinsic features, Extrinsic measures
 - and the concept of barriers defined in TOPS
- Illustration of barriers
 - Extrinsic
 - **♦** Intrinsic
- **▶** Conclusion

Proliferation Resistance: Definition and key concepts

Proliferation Resistance: in the news and in practice since a long time

- Inspection regimes and bilateral agreements :
 - ◆ IAEA, Euratom, ABACC, etc..., bilateral US-Euratom, US-Japan
- A concern addressed : LASCAR, safeguards in depth
- ► Technical and political actions : RERTR, HEU take-back policy
- ► INFCE, TOPS,
- ► Addressed when designing new systems: GenIV, INPRO,...

Definition of Proliferation Resistance

- ... is that characteristic of a <u>nuclear energy system</u> that impedes the diversion or undeclared production of nuclear material or misuse of technology, <u>by States</u> in order to acquire nuclear weapons or other nuclear explosive devices
- Internationally agreed definition
 - ◆ Ref: IAEA's organized T.M. Oct. 2002 / STR-332, Dec 2002
 - Used widely : GIF / Gen IV,
- Physical Protection is complementary, but different
 - ◆ There are some overlaps (e.g. : know where N.M. is)

Nuclear Energy System: whole cycle and whole life cycle

Proliferation Resistance Key Concepts

In the combination of the combin

Intrinsic features: technical design

Extrinsic measures: State's decision

Intrinsic Features, Extrinsic Measures and the Concept of Barriers Defined in TOPS

The TOPS Barriers

- Material barriers
 - Pertaining to the nuclear material itself
- Technical barriers
 - Pertaining to the technology and the facility
- Institutional barriers
 - Safeguards and other extrinsic measures

Intrinsic features and associated barriers Nuclear Material

- Attractiveness of nuclear material
- (to design and manufacture a weapon)
 - Isotopic, chemical, radiological, mass and bulk
- Isotopic as an example : further analysis
 - Critical mass, enrichment, spontaneous neutron fission, ...
 - ◆ HEU 95% > LEU 19.95 % > LEU 5%
 - ◆ Pu « Weapon grade » > Pu LWR @44 Gwd/t > Pu MOX S.F.
- Safeguards: threshold are practical
- Proliferation Resistance: <u>comparative analysis is</u> <u>meaningful,</u> and helpful for designers

Intrinsic features and associated barriers Facilities, Verification

- Attractiveness of facility
 - Prevent / inhibit diversion, Prevent / inhibit undeclared production or misuse (Incl. Modification : cost, time, safety,..)
- Examples include
 - closed core more « robust » than on-line refueling
 - Fuel fabrication: fully automated plant more « robust »
 - Other intrinsic or extrinsic can effectively compensate
- ▶ Facilitating verification: intrinsic impact extrinsic
 - Facility unattractiveness and detectability
 - DIV, timely and accurate NMC&A system

Extrinsic features and associated barriers

- Commitments and Treaties
 - ◆ NPT, Regional Treaties, ...
- Verification and controls
 - ◆ IAEA: safeguards further enhanced by Additional Protocol
 - ◆ Regional : Euratom, ABACC,
 - Export control
- Industrial and commercial
 - Location (need, number of « sensitive » facilities, ….)
 - Open market, addressing security of supply concern,
 offering spent fuel management services

Illustration of barriers through real life examples

The French Fuel Cycle

Some extrinsic / institutional aspects

- France has signed NPT
- France has a voluntary offer to the IAEA
 - Safeguards and Additional Protocol
- France is a member of European Union
 - All nuclear material of the French nuclear energy system are under the safeguards of Euratom
- France has an effective export control policy
 - Member of NSG
 - National and European legal and regulatory framework
 - Bilateral agreements

Extrinsic / nuclear energy system and location: industrial organisation serving worldwide needs

- Few key facilities (enrichment, reprocessing):
 - Capitalistic investment, large capacity
 - Serving a large number of reactors worldwide (> 100)
- ► French illustration :
 - Eurodif, serving French and international customers
 - ◆ La Hague, a large reprocessing plant serving 100⁺ NPPs
- ► Countries with small and medium size programs do not need to have their own facility on their territory
- Reprocessing: removal of spent fuel reduces short term risk and long term concern of « plutonium mine »

Extrinsic/ competitive and reliable supply

- ► Whatever the size of a program, needs of a country or of an operator of NPPs include:
 - Security of supply / reliability
 - Competitive price
- ► Liberalised and open market ensure:
 - Possible diversification of supply
 - Competition to ensure optimal prices and innovative offers
- ▶ It is one element of proliferation resistance
- AREVA is a market player in a competitive environment in all steps of the fuel cycle

Extrinsic/ multi-national control transparency

- Multi-national control: a reality
 - Enrichment: multi-national ownership
 - Eurodif, URENCO
 - UP-3 reprocessing plant:
 - an initial « cost + fee contract » with capacity reservation
 - ◆ Framatome-ANP: a franco-german merger (66% 34%)
- ► **Transparency** (in addition to control, safeguards, etc...)
 - ◆ EDF, AREVA, publish reports, audited accounts, ...
 - AREVA has the legal status of a private company...
 - the same duties and internal/external scrutiny

Intrinsic feature: stabilisation of Pu inventory, making the best use of industrial recycling

- ► the <u>MOX parity project</u>: new MOX fuel management to achieve energy & economic balance between MOX and UOx fuels
- ► MOX Aver. BU: 38 7 45 GWd/t_{HM} (7% 7 8.65% Pu)
- ► Target: stabilization of the separated Pu inventory and then of the spent fuel inventory in interim storage
- <u>Additional</u>: through MOX fuel use, further degradation of the isotopic composition

Proliferation Resistance and Assessment Methodology

- Proliferation resistance is a reality today, and it remains of importance for the future development of nuclear energy
- ► Already developed proliferation resistance assessment methodology offers « building blocks » useful for the analyst and the designers (technical, safeguards, political)
- ► Further work is needed to get towards an « as objective as possible » P.R.A.M. with internationally accepted concepts and tools
- Proliferation Resistance is one of the element of choice, but do not forget others (safety, economics,)

What it is all about! Thank you

